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bstract

Phase coexistence of Morse fluids is predicted for parameters in the range describing the behavior of metals using the grand-canonical transition
atrix Monte Carlo method. The critical properties of the vapor–liquid equilibrium curves for three fcc metals, Al, Cu, and Au, and two bcc alkali

etals, Na and K, are estimated and the critical temperature values are found to be in good agreement with the experimental data for the fcc metals

onsidered but overestimated for the bcc metals. For Na, it was found that the critical density and vapor pressure as a function of temperature
below the critical temperature) estimates to be approximately concurrent with experimental results.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The Morse potential energy function (PEF) is well suited
o describe the effective pair interaction forces in diatomic

olecules [1,2] and metals [3–6]. The vapor–liquid equilibrium
VLE) curves for this PEF have not been studied extensively.
kumura and Yonezawa [7] predicted the VLE for this poten-

ial model by scaling with respect to the separation rmin = 21/6σ

here Lennard-Jones (LJ) energy is at its minimum and obtained
educed critical temperature T ∗

C = kTC/D = 0.928, pressure
C

∗ = PCσ3/D = 0.331, and density ρC
∗ = ρCσ3 = 0.084,

here σ is the LJ diameter and D is the energy parameter for
he Morse potential. The aim of the study is to add to the under-
tanding of the coexistence properties of the Morse potential
odel for the range of parameters describing metals without

sing the LJ scaling parameter, rmin. Morse originally devel-
ped this pair PEF to correctly describe the allowed vibrational

nergy levels in diatomic molecules [1]. Girifalco and Weizer
xtended the application of the Morse potential to model cubic
etals [4]. Lincoln, et al. further refined the Morse potential for
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ical transition matrix Monte Carlo method

he five metals, which are studied here, by fitting the parameters
o experimentally determined values of the lattice constant, bulk

odulus, and cohesive energy [3]. The authors then theoreti-
ally predicted the elastic constants and found the values to be
n good agreement with experimental data. The Morse potential
as also been used to model the formation and diffusion of the
acancies in carbon, silicon, and germanium [8]. Ruffa has used
his potential model to hypothesize the association of melting
n cubic metals with the maximum allowable thermal expansion
n the solid metal [5] and also determined the dependence of
lastic shear moduli on the aforementioned thermal expansion
roperties [6].

Metals at room temperature and pressure are generally solids
ith the exception of mercury. However, at extreme conditions
f temperature and pressure, metals exist in the liquid and vapor
hases. In the liquid phase, the metal melt consists of ions and
elocalized electrons. The vapor phase consists of isolated atoms
t low densities. At high densities, near the critical point, the
etal vapor contains ions and unbound electrons [9]. We have

implified all the possible interparticle interactions in the liq-
id and vapor phases of the metals such that the interactions

re effectively modeled by using the Morse potential. The VLE
urves of alkali metals, sodium (Na), and potassium (K) form-
ng body-centered-cubic (bcc) lattice in the solid state, have been
etermined to compare with available experimental data. For the
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etals, aluminum (Al), gold (Au), and copper (Cu), which form
table face-centered-cubic (fcc) lattice in the solid state, the VLE
ata has been predicted. The equilibrium curves for the metal
elt and vapor have been predicted in this study using the grand-

anonical transition-matrix Monte Carlo (GC-TMMC) method
10].

. Potential model

Mathematically, the Morse function is expressed as:

(rij) = D[e−2α(rij−r0) − 2 e−α(rij−r0)], (1)

here the constant D is the dissociation energy, α a constant
ith dimensions of reciprocal length, and r0 is the equilibrium
istance of the two particles. The distance between the ith and jth
articles is given by rij. At rij = r0, the minimum energy is given
y U(r0) = −D. The parameters D, α, and r0 have been deter-
ined by a fitting procedure to experimental data for the lattice

onstant, bulk modulus, and cohesive energies of the respective
etals in their solid states at room temperature [3]. The same

alues for these parameters are used to model the VLE curves for
hese metals. Table 1 exhibits the parameters for the five metals
sed in the study. The range of interactions for the bcc metals
tudied is much higher than that for the fcc metals as is reflected
n the values of the α parameters. The quantity αr0 for the five
etals under our consideration lies in a narrow range from 2.95

o 4.79. However, the steepness of the potential is higher for the
cc metals as compared to the bcc metals as is expected from
he values for D. The use of a pair potential model simplifies the
omputations and the results of simulations, has been shown to
uccessfully predict the elastic constants for metals [3].

. Simulation method and details

Simulations are conducted in the grand canonical ensemble
here the chemical potential µ, volume V, and temperature T

re kept fixed and particle number N and energy U fluctuate.
he probability π of observing a microstate s with energy Us

nd particle number Ns is:

s = 1

Ξ

VNs

Λ3NsNs!
exp[−β(Us − µNs)], (2)
here β = 1/kBT is the inverse temperature, Ξ the grand canon-
cal partition function, and Λ is the de Broglie wavelength. The
robability Π(N) of observing a macrostate with a given number

able 1
arameters for Morse potential energy function [3]

etal D (× 10−13 ergs) α (Å−1) r0 (Å) αr0

l 4.3264 1.0341 3.4068 3.5230
u 5.2587 1.3123 2.8985 3.8037
u 7.6148 1.5830 3.0242 4.7873
a 0.9241 0.5504 5.3678 2.9544

0.8530 0.4766 6.4130 3.0564

a

w
s
n
i
u

i
v
c
a
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f molecules (density) is given by:

(N) =
∑

Ns=N

πs. (3)

o obtain the probability distribution Π(N) we employ the tran-
ition matrix Monte Carlo scheme [10], with a N-dependent
ampling bias. The method monitors the acceptance probability
f attempted MC moves and subsequently uses this informa-
ion to calculate the macrostate transition probability matrix.
or every attempted move from a microstate s to a microstate t,
egardless of whether the move is accepted, we update a collec-
ion matrix C with the acceptance probability a(s → t) = min[1,
t/πs] as follows:

C(N → M) = C(N → M) + a(s → t),

C(N → N) = C(N → N) + 1 − a(s → t),
(4)

here N and M represent the macrostate labels for microstates
and t, respectively. At any time during the simulation the
acrostate transition probability matrix can be obtained by

ppropriately normalizing the collection matrix:

(N → M) = C(N → M)∑
OC(N → O)

. (5)

o obtain the macrostate probabilities, we utilize the detailed
alance expression:

(N)P(N → M) = Π(M)P(M → N). (6)

or a grand-canonical simulation where transitions in N are
uch that N → N, N → N + 1, and N → N − 1, the transition-
robability matrix P is tri-diagonal. In such conditions, a
equential approach provides a suitable means for obtaining the
acrostate probabilities:

n Π(N + 1) = ln Π(N) − ln

[
P(N + 1 → N)

P(N → N + 1)

]
. (7)

o ensure adequate sampling of all states we employ a multi-
anonical sampling [11] scheme that encourages the system to
ample all densities with uniform frequency. This procedure is
mplemented by assigning each macrostate a weight η(N) that is
nversely proportional to the current estimate of its probability,
(N) = −ln Π(N). Acceptance criteria are modified to account
or the bias as follows:

η(s → t) = min

[
1,

η(M)πt

η(N)πs

]
, (8)

here η(N) and η(M) are weights corresponding to microstates
and t, respectively. Introduction of a weighting function does
ot alter the mechanism through which the collection matrix
s updated. The unbiased acceptance probability is still used to
pdate the collection matrix.

Simulations are completed at a specified value of the chem-

cal potential, which is not necessarily close to the saturation
alue. To determine the phase-coexistence value of the chemi-
al potential, the histogram reweighting method of Ferrenberg
nd Swendson [12] is used. This method enables one to shift
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are given in Table 3. The behavior of the Morse vapor indicates
significant deviation from ideal gas behavior at the critical point.
The corresponding states theorem states that the reduced den-
sities at the same Tr, Pr for vapors, with same acentric factor,
J.K. Singh et al. / Fluid Ph

he probability distribution obtained from a simulation at chem-
cal potential µ0 to a probability distribution corresponding to a
hemical potential µ using the relation:

n Π(N; µ) = ln Π(N; µ0) + β(µ − µ0)N. (9)

o determine the coexistence chemical potential, we apply the
bove relation to find the chemical potential that produces a
robability distribution Πc(N) where the areas under the vapor
nd liquid regions are equal. Saturated densities are related to
he first moment of the vapor and liquid peaks of the coexistence
robability distribution. To calculate the saturation pressure we
se the expression:

pV = ln

(∑
N

Πc(N)

Πc(0)

)
− ln(2). (10)

he critical properties are estimated from a least square fit of
he scaling law:

l − ρv = C1

(
1 − T

Tc

)βc

+ C2

(
1 − T

Tc

)βc+


, (11)

here ρl and ρv are the liquid and vapor densities, respectively,
nd C1 and C2 are fitting parameters. The critical exponent βc is
aken as 0.325 and 
 = 0.51. The critical temperature estimate
rom the above is utilized to get the critical density from the least
quare fit to the law of rectilinear diameter [13]:

ρl + ρv

2
= ρc + C3(T − Tc). (12)

ritical pressure is calculated using the least square fitting to the
ollowing expression:

n P = A − B

T + C
(13)

here A and B are constants.
Simulations for calculating saturated densities and vapor

ressures are conducted using single AMD Opteron. The MC
ove distribution is: 30% particle displacement, 35% particle

nsertion and 35% particle deletion. Typical maximum molecule
umbers for these simulations varied from 350 to 550. Finite size
ffects on the phase coexistence densities and vapor pressures
re observed to become negligible for system size (maximum
umber of molecules) above 350 for all the metals. For each data
oint, four runs were performed to calculate the statistical error.

. Results and discussion

Fig. 1 shows typical probability density curves for Na. As the
emperature increases, the free energy barrier between the coex-
sting vapor and liquid phases (shown as two peaks in Fig. 1)
ecreases. This barrier disappears at the critical point. The sim-
lation results for the Morse fluids using parameters listed in
able 1 are summarized in Table 2 in terms of chemical poten-
ial, pressure, and densities of the vapor and liquid phases at
oexistence for the temperatures of interest. The VLE curves of
he Morse potential model for the fcc metals, Al, Cu, and Au,
nd for the bcc metals, Na and K, are illustrated in Figs. 2 and 3.

F
a
r

ig. 1. Plot of probability densities of Na vs. molecule number, N, over the
emperature range from 2800 to 3800 K with interval of 200 K. Statistical error
s smaller than the symbol size.

ig. 2 presents the plot of reduced temperature (Tr = T/TC) ver-
us reduced density (ρr = ρ/ρC). It shows that the saturated liquid
ines for the fcc metals are displaced from those representing
he bcc metals whereas the saturated vapor lines are almost con-
urrent for all the metals. The ratio of reduced density ρr1 of
ny metal taken with respect to the minimum value for reduced
ensity, ρr2, leads to the observation that at Tr = 0.7ρr1/ρr2 of
apor phase is approximately twice than that of liquid phase.
owever, absolute difference |ρr1 − ρr2| is greater in the liquid-
hase and is likely to reflect the differences in structure of the fcc
nd bcc metals whereas in the vapor phase no such differences
ould exist. The critical compressibility factor ZC is given by
C = PCVC/RTC and values of ZC for the five metals studied here
ig. 2. VLE curves for Al, Cu, Au, Na, and K. Temperature and density values
re reduced by critical properties; the reduced temperature, Tr = T/TC and the
educed density, ρr = ρ/ρC. Statistical error is smaller than the symbol size.
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Table 2
Summary of simulation results indicating the chemical potential, pressure, and
densities in the vapor and liquid phases at coexistence for each metal

Metal T (K) βµ P (bar) ρv (kg/m3) ρl (kg/m3)

Al

3400 −10.661 (5) 11.06 (8) 1.066 (8) 2254(14)
4200 −8.9520 (9) 76.85 (7) 6.106 (5) 2130 (7)
4600 −8.3423 (1) 157.3 (1) 11.60 (2) 2070 (2)
5000 −7.8428 (5) 287.4 (1) 19.91 (15) 2010 (3)
5400 −7.4315 (5) 479.0 (4) 31.69 (3) 1940 (5)
5800 −7.0832 (6) 748.8 (6) 47.52 (6) 1870 (1)
6200 −6.7868 (3) 1109 (1) 68.54 (5) 1800 (2)
6600 −6.5424 (5) 1569 (1) 95.42 (2) 1720 (1)
7000 −6.3220(4) 2127 (1) 128.6 (1) 1639 (1)
7200 −6.2226 (2) 2460 (1) 149.4 (1) 1600 (1)
7400 −6.1298 (1) 2825 (1) 172.8 (1) 1550 (1)

Cu

7500 −5.6688 (3) 4668 (2) 706 (1) 4910 (3)
7800 −5.5436 (2) 5678 (1) 898 (1) 4610 (2)
8000 −5.4671 (2) 6423 (5) 1070 (1) 4380 (1)
8200 −5.3938 (3) 7254 (3) 1310 (4) 4080 (5)
8300 −5.3597 (2) 7684 (4) 1440 (6) 3920 (4)
8400 −5.3261 (2) 8140 (4) 1590 (5) 3760 (3)

Au

6000 −6.5460 (1) 1419 (1) 702 (1) 12500(7)
6400 −6.2715 (2) 2086 (1) 1050 (1) 11800 (4)
6600 −6.1463 (1) 2504 (1) 1280 (1) 11400 (4)
6700 −6.0891 (1) 2726 (1) 1420 (1) 11200 (8)
6800 −6.0334 (2) 2963 (2) 1570 (2) 10900 (9)
6900 −5.9807 (1) 3213 (1) 1740 (1) 10700 (4)
7000 −5.9297 (1) 3478 (1) 1930 (1) 10400 (6)
7200 −5.8322 (2) 4058 (1) 2415 (2) 9744 (8)

Na

2800 −7.4748 (1) 252.6 (1) 29.57 (1) 900.5 (2)
3000 −7.2115 (2) 364.7 (2) 41.93 (3) 846.8 (2)
3200 −6.9869 (2) 505.2 (1) 57.90 (3) 792.1 (7)
3400 −6.7933 (2) 677.3 (3) 78.78 (7) 731.4 (7)
3600 −6.6253 (1) 883.2 (2) 107.4 (1) 664.6 (4)
3800 −6.4789 (5) 1126 (1) 152.3 (1) 581.3 (3)

K

2000 −8.5429 (3) 59.79 (1) 15.88 (1) 735.5 (2)
2100 −8.3319 (4) 79.10 (4) 20.53 (1) 712.7 (1)
2200 −8.1426 (1) 102.3 (1) 26.08 (1) 688.7 (1)
2300 −7.9728 (4) 129.6 (1) 32.64 (2) 663.9 (11)
2400 −7.8192 (2) 161.3 (1) 40.39 (1) 638.4 (5)
2500 −7.6811 (2) 197.5 (1) 49.44 (1) 612.6 (3)
2600 −7.5547 (1) 238.9 (1) 60.21 (1) 585.4 (4)
2700 −7.4395 (3) 285.4 (2) 73.09 (5) 555.5 (6)
2800 −7.3339 (2) 337.4 (2) 88.89 (4) 523.6 (3)

Subscripts ‘v’ and ‘l’ represent vapor and liquid, respectively. Numbers in the
parenthesis indicate 67% confidence limits of the last digit(s) of the reported
value.

Table 3
Critical compressibility factors from simulation

Metal ZC

Al 0.2485 (20)
Cu 0.3203 (60)
Au 0.2808 (16)
Na 0.2583 (40)
K 0.2893 (54)

Numbers in the parenthesis indicate 67% confidence limits of the last digits of
the reported value.
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ig. 3. VLE curves for Al, Cu, Au, Na, and K. The reduced temperature and
ensity are T* = kT/D and ρ∗ = ρr3

0, respectively. Statistical error is smaller than
he symbol size. Symbol “+” represents the results of Bhatt et al. [19].

eviate from ideal gas behavior by the same amount. The acen-
ric factor is determined by using an expression given below:

= −1.0 − log(P sat
r )Tr=0.7. (14)

he experimental value for acentric factor of Na is −0.13 and
ur simulation results predict an acentric factor of −0.25. The
orse potential is able to predict qualitatively that the acentric

actor for Na vapor is negative. Limited experimental data does
ot allow comparison for the other metals. The metal vapors
re anticipated to behave drastically differently from simple flu-
ds, for which ω = 0, and the Morse potential is able to predict
his difference. The increase in the value of αr0 for the metals
rom Na to Au becomes evident in Fig. 3 as a corresponding
ecrease in critical temperature and critical density. The esti-
ated temperature, density, and pressure at critical point from

imulations and the known values from experiments for all five
etals are shown in Table 4. Comparison with available refer-

nce data shows the calculated critical temperature for the fcc
etals to be within 13% deviation from the literature value,

hough the critical temperature is overestimated for both the
cc metals. The critical pressure and critical density values as
etermined by our simulations for all the five metals are of the
ame order as the values found in literature though considerably
verestimated. The critical pressure values for Au and Al, and
ritical density value for Na are exceptions. Note that the critical
oint data for the metals show considerable scatter in literatures
14–16].

The vapor pressures for all the metals in the given temperature
ange have also been estimated from the simulation. Fig. 4 shows
he plot of logarithmic saturation pressures with the inverse tem-
erature and exhibits linear relations below the critical pressure.
ence, the Antoine formalism given by Eq. (13) is used to deter-

ine the critical pressure instead of the more complex Wagner

quation. The differences in the nature of the bcc and the fcc
etals are reflected in the behavior of the respective vapor pres-

ures as related to temperature. The critical temperature range
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Table 4
Summary of critical properties from simulation and literature

Metal Simulation Literature

TC (K) PC (bar) ρC (kg/m3) TC (K) PC (bar) ρC (kg/m3)

Ala 8472 (50) 5094 (40) 785 (8) 8944 4726 430
Cua 8650 (50) 9543 (180) 2631 (3) 7696 5829 1930
Aub 7566 (30) 5250 (30) 5925 (5) 7400 (1100) 5300 (200) 7692 (1775)
Nac 3932 (10) 1290 (20) 353 (2) 2485 248 300
Kc 3120 (10) 534 (10) 277 (1) 2280 161 190

Numbers in the parenthesis under the title ‘simulation’ indicate 67% confidence limits of the last digit(s) of the reported value. Error values for literature data are
shown wherever it was available.

o
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a Reference [14].
b Reference [22].
c Reference [23].

f Al extrapolated from experimental data is observed from
700 to 12,100 K [17,18]. The recent study by Bhatt et al. using
he Gibbs ensemble Monte Carlo technique with the complex
mbedded-atom potential (called NP-B potential) reveals a crit-
cal temperature of 6299 K [19]. The critical temperature of Al
rom our simulation (see Table 4) shows a higher value than
hatt et al.’s, yet both values lies within the reported experi-
ental range. Our simulation result shows good agreement with

ome of the literature values [20,21]. Note that literature values
f the critical point for fcc metals except Au are obtained from
tting procedures to experimental data. Experimental data avail-
ble for Na (see Fig. 5) shows that the values of the saturation
ressures from experiment and simulation follow a same trend.
owever, the vapor pressure is underestimated consistently by
ur simulation. From Table 4, the estimated Na critical density
f 353 kg/m3 is close to the experimental value of 300 kg/m3.
his is however not true for K, where the predicted critical den-
ity is higher than the experimental value. The critical pressures

or the alkali metals show large deviations from the experimen-
al values. For Na, the pressure is vastly overestimated because
he critical temperature is overvalued. It is observed that at the
xperimental critical point of Na metal, 2485 K, the correspond-

ig. 4. Plot of saturation pressure as a function of inverse temperature. Statistical
rror is smaller than the symbol size. Symbol “+” represents the results of Bhatt
t al. [19].

b

i
t

5

p
p
t
e
e
m
a
t
l
u
t
i
m
V

ig. 5. Comparison plot of vapor pressures for Na as a function of temperature
etween simulation and experimental values.

ng pressure predicted by simulation is a good approximation to
he experimental critical pressure.

. Conclusions

Availability of experimental data for Na has allowed for com-
arisons with our simulation results and except for the critical
oint (TC, PC), simulated values of vapor pressure as a func-
ion of temperature closely follow the experimental data. The
xperimental critical properties of K are much lower than those
stimated from the Morse potential. The VLE data for the fcc
etals has also been predicted. The limited literature data avail-

ble does not allow for a comprehensive comparison. The critical
emperatures estimated for Al, Cu, and Au, lie within 13% of the
iterature values. The critical pressure and critical density sim-
lation values for the three fcc metals are overestimated, with
he exception of critical pressure values for Au and Al as noted

n the previous section. The differences in the structures of the

etal melt for the fcc and bcc metals are also reflected in the
LE curves.



6 ase E

w
h
u
w
d
t
h
t
d
P
i
o
t
g
p
a
s

A

a
b
p
a

R

[
[
[
[

[
[
[

[
[

[

J.K. Singh et al. / Fluid Ph

In this study, a simple pair PEF, the Morse potential model,
ith the fitting parameters reflecting solid phase properties
as been used to interpret the complex interactions in the liq-
id and vapor phases. The Morse PEF has been combined
ith a classical Monte Carlo technique, GC-TMMC, to pre-
ict the VLE for metals in forms of fluids. The objectives of
he study were to investigate the behavior of Morse fluids and
ow correctly the solid phase parameters available in litera-
ure describe the vapor and liquid phases, which are distinctly
ifferent in behavior from the solid phase. Since the Morse
EF is not completely reducible, the choice of parameter αr0

s taken as per the solid metal range. The critical properties
f Cu, Na, and K are overestimated by our simulations and
his indicates that the used parameters need to be refined to
ive a better agreement with experimental data. Scaling of the
arameters to correctly predict the literature values, which are
lso observed to have a wide scatter, is reserved for further
tudy.
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