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Abstract

Phase coexistence of Morse fluids is predicted for parameters in the range describing the behavior of metals using the grand-canonical transition
matrix Monte Carlo method. The critical properties of the vapor—liquid equilibrium curves for three fcc metals, Al, Cu, and Au, and two bcc alkali
metals, Na and K, are estimated and the critical temperature values are found to be in good agreement with the experimental data for the fcc metals
considered but overestimated for the becc metals. For Na, it was found that the critical density and vapor pressure as a function of temperature
(below the critical temperature) estimates to be approximately concurrent with experimental results.
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1. Introduction

The Morse potential energy function (PEF) is well suited
to describe the effective pair interaction forces in diatomic
molecules [1,2] and metals [3-6]. The vapor-liquid equilibrium
(VLE) curves for this PEF have not been studied extensively.
Okumura and Yonezawa [7] predicted the VLE for this poten-
tial model by scaling with respect to the separation ryi, =200
where Lennard-Jones (LJ) energy is at its minimum and obtained
reduced critical temperature T} = kTc/D = 0.928, pressure
Pc* = Pco®/D = 0.331, and density pc* = pco’ = 0.084,
where o is the L] diameter and D is the energy parameter for
the Morse potential. The aim of the study is to add to the under-
standing of the coexistence properties of the Morse potential
model for the range of parameters describing metals without
using the LJ scaling parameter, rpyi,. Morse originally devel-
oped this pair PEF to correctly describe the allowed vibrational
energy levels in diatomic molecules [1]. Girifalco and Weizer
extended the application of the Morse potential to model cubic
metals [4]. Lincoln, et al. further refined the Morse potential for
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the five metals, which are studied here, by fitting the parameters
to experimentally determined values of the lattice constant, bulk
modulus, and cohesive energy [3]. The authors then theoreti-
cally predicted the elastic constants and found the values to be
in good agreement with experimental data. The Morse potential
has also been used to model the formation and diffusion of the
vacancies in carbon, silicon, and germanium [8]. Ruffa has used
this potential model to hypothesize the association of melting
in cubic metals with the maximum allowable thermal expansion
in the solid metal [5] and also determined the dependence of
elastic shear moduli on the aforementioned thermal expansion
properties [6].

Metals at room temperature and pressure are generally solids
with the exception of mercury. However, at extreme conditions
of temperature and pressure, metals exist in the liquid and vapor
phases. In the liquid phase, the metal melt consists of ions and
delocalized electrons. The vapor phase consists of isolated atoms
at low densities. At high densities, near the critical point, the
metal vapor contains ions and unbound electrons [9]. We have
simplified all the possible interparticle interactions in the lig-
uid and vapor phases of the metals such that the interactions
are effectively modeled by using the Morse potential. The VLE
curves of alkali metals, sodium (Na), and potassium (K) form-
ing body-centered-cubic (bce) lattice in the solid state, have been
determined to compare with available experimental data. For the
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metals, aluminum (Al), gold (Au), and copper (Cu), which form
stable face-centered-cubic (fcc) lattice in the solid state, the VLE
data has been predicted. The equilibrium curves for the metal
melt and vapor have been predicted in this study using the grand-
canonical transition-matrix Monte Carlo (GC-TMMC) method
[10].

2. Potential model

Mathematically, the Morse function is expressed as:
Ulryj) = Dle™ 20510 — 2710}, M

where the constant D is the dissociation energy, « a constant
with dimensions of reciprocal length, and ry is the equilibrium
distance of the two particles. The distance between the ith and jth
particles is given by r;;. At rjj =ro, the minimum energy is given
by U(rg) = —D. The parameters D, «, and ro have been deter-
mined by a fitting procedure to experimental data for the lattice
constant, bulk modulus, and cohesive energies of the respective
metals in their solid states at room temperature [3]. The same
values for these parameters are used to model the VLE curves for
these metals. Table 1 exhibits the parameters for the five metals
used in the study. The range of interactions for the bcc metals
studied is much higher than that for the fcc metals as is reflected
in the values of the o parameters. The quantity arg for the five
metals under our consideration lies in a narrow range from 2.95
to 4.79. However, the steepness of the potential is higher for the
fcc metals as compared to the bce metals as is expected from
the values for D. The use of a pair potential model simplifies the
computations and the results of simulations, has been shown to
successfully predict the elastic constants for metals [3].

3. Simulation method and details

Simulations are conducted in the grand canonical ensemble
where the chemical potential 1, volume V, and temperature 7
are kept fixed and particle number N and energy U fluctuate.
The probability = of observing a microstate s with energy Uj
and particle number Nj is:

1 v
5 AN N

Ty = exp[—B(U;s — uNy)l, 2
where 8= 1/kgT is the inverse temperature, = the grand canon-
ical partition function, and A is the de Broglie wavelength. The
probability IT(N) of observing a macrostate with a given number

Table 1

Parameters for Morse potential energy function [3]

Metal D(x 10713 ergs) o (A’l) o (A) arg

Al 4.3264 1.0341 3.4068 3.5230
Cu 5.2587 1.3123 2.8985 3.8037
Au 7.6148 1.5830 3.0242 4.7873
Na 0.9241 0.5504 5.3678 2.9544
K 0.8530 0.4766 6.4130 3.0564

of molecules (density) is given by:

oy =Y = 3)
Ny=N

To obtain the probability distribution I7(N) we employ the tran-
sition matrix Monte Carlo scheme [10], with a N-dependent
sampling bias. The method monitors the acceptance probability
of attempted MC moves and subsequently uses this informa-
tion to calculate the macrostate transition probability matrix.
For every attempted move from a microstate s to a microstate ,
regardless of whether the move is accepted, we update a collec-
tion matrix C with the acceptance probability a(s — ) =min[1,
7,/7] as follows:

C(N > M)=C(N — M)+ a(s —> 1),

C(N—-> N)=CWN—>N)+1—a(s —>1), @

where N and M represent the macrostate labels for microstates
s and t, respectively. At any time during the simulation the
macrostate transition probability matrix can be obtained by
appropriately normalizing the collection matrix:

C(N—-> M)

S Sew =0y

5
To obtain the macrostate probabilities, we utilize the detailed
balance expression:

I(NYP(N — M) = II(M)P(M — N). )

For a grand-canonical simulation where transitions in N are
such that N— N, N— N+1, and N— N — 1, the transition-
probability matrix P is tri-diagonal. In such conditions, a
sequential approach provides a suitable means for obtaining the
macrostate probabilities:

(N

InII(N + 1) = In TT(N) — In [l)(NH_)N)] .

P(N > N+ 1)

To ensure adequate sampling of all states we employ a multi-
canonical sampling [11] scheme that encourages the system to
sample all densities with uniform frequency. This procedure is
implemented by assigning each macrostate a weight n(N) that is
inversely proportional to the current estimate of its probability,
n(N)=—InIT1(N). Acceptance criteria are modified to account
for the bias as follows:

U(M)”t}
" n(N)ms

where 1n(N) and n(M) are weights corresponding to microstates
s and ¢, respectively. Introduction of a weighting function does
not alter the mechanism through which the collection matrix
is updated. The unbiased acceptance probability is still used to
update the collection matrix.

Simulations are completed at a specified value of the chem-
ical potential, which is not necessarily close to the saturation
value. To determine the phase-coexistence value of the chemi-
cal potential, the histogram reweighting method of Ferrenberg
and Swendson [12] is used. This method enables one to shift

®)

ay(s — t) = min [1
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the probability distribution obtained from a simulation at chem-
ical potential p to a probability distribution corresponding to a
chemical potential u using the relation:

InTI(N; ) = InTI(N; jn0) + (i — o) N. ©))

To determine the coexistence chemical potential, we apply the
above relation to find the chemical potential that produces a
probability distribution I71.(N) where the areas under the vapor
and liquid regions are equal. Saturated densities are related to
the first moment of the vapor and liquid peaks of the coexistence
probability distribution. To calculate the saturation pressure we
use the expression:

I1.(N)
BpV = In < ) — In(2). (10)
XN: 11:(0)

The critical properties are estimated from a least square fit of
the scaling law:

N ﬁc+c - o (11)
p—p =L T 2 T )

C Cc

where p! and pV are the liquid and vapor densities, respectively,
and C7 and C; are fitting parameters. The critical exponent S is
taken as 0.325 and A =0.51. The critical temperature estimate
from the above is utilized to get the critical density from the least
square fit to the law of rectilinear diameter [13]:

1 \4

o +p
2
Critical pressure is calculated using the least square fitting to the

following expression:
B
hP=A—- —— 13)
T+C
where A and B are constants.

Simulations for calculating saturated densities and vapor
pressures are conducted using single AMD Opteron. The MC
move distribution is: 30% particle displacement, 35% particle
insertion and 35% particle deletion. Typical maximum molecule
numbers for these simulations varied from 350 to 550. Finite size
effects on the phase coexistence densities and vapor pressures
are observed to become negligible for system size (maximum
number of molecules) above 350 for all the metals. For each data
point, four runs were performed to calculate the statistical error.

= pc + C3(T = To). 12)

4. Results and discussion

Fig. 1 shows typical probability density curves for Na. As the
temperature increases, the free energy barrier between the coex-
isting vapor and liquid phases (shown as two peaks in Fig. 1)
decreases. This barrier disappears at the critical point. The sim-
ulation results for the Morse fluids using parameters listed in
Table 1 are summarized in Table 2 in terms of chemical poten-
tial, pressure, and densities of the vapor and liquid phases at
coexistence for the temperatures of interest. The VLE curves of
the Morse potential model for the fcc metals, Al, Cu, and Au,
and for the bcc metals, Na and K, are illustrated in Figs. 2 and 3.

30

Fig. 1. Plot of probability densities of Na vs. molecule number, N, over the
temperature range from 2800 to 3800 K with interval of 200 K. Statistical error
is smaller than the symbol size.

Fig. 2 presents the plot of reduced temperature (7 =7/T¢) ver-
sus reduced density (or = p/pc). It shows that the saturated liquid
lines for the fcc metals are displaced from those representing
the bee metals whereas the saturated vapor lines are almost con-
current for all the metals. The ratio of reduced density p,; of
any metal taken with respect to the minimum value for reduced
density, pr2, leads to the observation that at 7y =0.7pr1/pr2 of
vapor phase is approximately twice than that of liquid phase.
However, absolute difference |p;; — pr2] is greater in the liquid-
phase and is likely to reflect the differences in structure of the fcc
and bcc metals whereas in the vapor phase no such differences
would exist. The critical compressibility factor Z¢ is given by
Zc =PcVc/RTc and values of Z¢ for the five metals studied here
are given in Table 3. The behavior of the Morse vapor indicates
significant deviation from ideal gas behavior at the critical point.
The corresponding states theorem states that the reduced den-
sities at the same Ty, P, for vapors, with same acentric factor,
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Fig. 2. VLE curves for Al, Cu, Au, Na, and K. Temperature and density values
are reduced by critical properties; the reduced temperature, 7y =7/T¢c and the
reduced density, pr = p/pc. Statistical error is smaller than the symbol size.
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Table 2
Summary of simulation results indicating the chemical potential, pressure, and
densities in the vapor and liquid phases at coexistence for each metal

Metal T(K) SBu P (bar) py (kg/m?) o1 (kg/m?)
3400 —10.661 (5) 11.06 (8) 1.066 (8)  2254(14)
4200  —8.9520(9) 76.85 (7) 6.106 (5)  2130(7)
4600  —8.3423(1)  157.3(1) 11.60 (2)  2070(2)
5000 —7.8428(5)  287.4(1) 19.91 (15)  2010(3)
5400 —7.4315(5)  479.0 (4) 31.69 (3)  1940(5)
Al 5800  —7.0832(6)  748.8 (6) 47.52(6)  1870(1)
6200 —6.7868 (3)  1109(1) 68.54(5)  1800(2)
6600  —6.5424 (5) 1569(1) 95.42(2)  1720(1)
7000  —6.3220(4)  2127(1) 128.6 (1) 1639 (1)
7200  —6.2226(2) 2460(1) 149.4 (1) 1600 (1)
7400  —6.1298 (1)  2825(1) 172.8 (1) 1550 (1)
7500  —5.6688 (3) 4668 (2) 706 (1) 4910 (3)
7800  —5.5436(2) 5678(1) 898 (1) 4610(2)
Ccu 8000  —5.4671(2) 6423(5) 1070(1) 4380 (1)
8200 —5.3938(3) 7254(3) 1310(4) 4080 (5)
8300  —5.3597 (2) 7684(4) 1440 (6) 3920 (4)
8400  —5.3261 (2) 8140(4) 1590 (5) 3760 (3)
6000  —6.5460 (1) 1419(1) 702(1) 12500(7)
6400  —6.2715(2) 2086(1) 1050 (1) 11800 (4)
6600  —6.1463 (1)  2504(1) 1280(1) 11400 (4)
Au 6700  —6.0891 (1) 2726(1) 1420(1) 11200(8)
6800  —6.0334(2) 2963(2) 1570(2) 10900 (9)
6900  —5.9807 (1) 3213(1) 1740(1) 10700 (4)
7000  —5.9297 (1) 3478(1) 1930(1) 10400 (6)
7200  —5.8322(2) 4058(1) 2415(2) 9744 (8)
2800 —7.4748 (1)  252.6 (1) 29.57(1)  900.5(2)
3000  —7.2115(2)  364.7 (2) 41.93(3)  846.8(2)
Na 3200 —6.9869(2)  505.2(1) 57.90 (3)  792.1(7)
3400  —6.7933(2)  677.3(3) 78.78 (7)  731.4(7)
3600  —6.6253 (1)  883.2(2) 107.4 (1) 664.6 (4)
3800 —6.4789 (5) 1126(1) 152.3 (1) 581.3 (3)
2000  —8.5429 (3) 59.79 (1) 1588 (1)  735.5(2)
2100  —8.3319 (4) 79.10 (4) 2053 (1) 7127 (1)
2200 —8.1426 (1)  102.3 (1) 26.08 (1)  688.7 (1)
2300 —7.9728(4)  129.6(1) 3264 (2)  663.9(11)
K 2400  —7.8192(2) 1613 (1) 4039 (1)  638.4(5)
2500 —7.6811(2)  197.5(1) 4944 (1)  612.6 (3)
2600 —7.5547(1)  238.9(1) 60.21 (1) 5854 (4)
2700  —7.4395(3)  285.4(2) 73.09 (5)  555.5(6)
2800 —7.3339(2) 33742 88.89 (4)  523.6(3)

Subscripts ‘v’ and ‘1’ represent vapor and liquid, respectively. Numbers in the
parenthesis indicate 67% confidence limits of the last digit(s) of the reported
value.

Table 3

Critical compressibility factors from simulation

Metal Zc

Al 0.2485 (20)
Cu 0.3203 (60)
Au 0.2808 (16)
Na 0.2583 (40)
K 0.2893 (54)

Numbers in the parenthesis indicate 67% confidence limits of the last digits of
the reported value.

1 1 1 1 1 L 1

@ [ ]
[ L
5] [ -
& &
o "u, o
I. [ ]
4 ) b
3 'l..
37 -
O Au
A Cu
2 O Al B
H K
0 Q + ® Na
= @ —EJ_]‘JI] + .0 i

I I I I I
1.5 2.0 2.5 3.0 3.5

p*

Fig. 3. VLE curves for Al, Cu, Au, Na, and K. The reduced temperature and
density are T" =kT/D and p* = prg, respectively. Statistical error is smaller than
the symbol size. Symbol “+” represents the results of Bhatt et al. [19].

deviate from ideal gas behavior by the same amount. The acen-
tric factor is determined by using an expression given below:

—log(P;™) g _g 7- (14)

The experimental value for acentric factor of Na is —0.13 and
our simulation results predict an acentric factor of —0.25. The
Morse potential is able to predict qualitatively that the acentric
factor for Na vapor is negative. Limited experimental data does
not allow comparison for the other metals. The metal vapors
are anticipated to behave drastically differently from simple flu-
ids, for which w =0, and the Morse potential is able to predict
this difference. The increase in the value of arq for the metals
from Na to Au becomes evident in Fig. 3 as a corresponding
decrease in critical temperature and critical density. The esti-
mated temperature, density, and pressure at critical point from
simulations and the known values from experiments for all five
metals are shown in Table 4. Comparison with available refer-
ence data shows the calculated critical temperature for the fcc
metals to be within 13% deviation from the literature value,
though the critical temperature is overestimated for both the
bce metals. The critical pressure and critical density values as
determined by our simulations for all the five metals are of the
same order as the values found in literature though considerably
overestimated. The critical pressure values for Au and Al, and
critical density value for Na are exceptions. Note that the critical
point data for the metals show considerable scatter in literatures
[14-16].

The vapor pressures for all the metals in the given temperature
range have also been estimated from the simulation. Fig. 4 shows
the plot of logarithmic saturation pressures with the inverse tem-
perature and exhibits linear relations below the critical pressure.
Hence, the Antoine formalism given by Eq. (13) is used to deter-
mine the critical pressure instead of the more complex Wagner
equation. The differences in the nature of the bcc and the fcc
metals are reflected in the behavior of the respective vapor pres-
sures as related to temperature. The critical temperature range

w=-—1.0
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Table 4
Summary of critical properties from simulation and literature
Metal Simulation Literature
Te (K) Pc (bar) pe (kg/m?) Te (K) Pc (bar) pe (kg/m?)
Al? 8472(50) 5094 (40) 785(8) 8944 4726 430
Cu® 8650 (50) 9543 (180) 2631(3) 7696 5829 1930
AuP 7566 (30) 5250(30) 5925(5) 7400 (1100) 5300(200) 7692 (1775)
Na® 3932(10) 1290 (20) 353(2) 2485 248 300
K* 3120(10) 534(10) 277(1) 2280 161 190

Numbers in the parenthesis under the title ‘simulation’ indicate 67% confidence limits of the last digit(s) of the reported value. Error values for literature data are

shown wherever it was available.
a Reference [14].
b Reference [22].
¢ Reference [23].

of Al extrapolated from experimental data is observed from
5700 to 12,100 K [17,18]. The recent study by Bhatt et al. using
the Gibbs ensemble Monte Carlo technique with the complex
embedded-atom potential (called NP-B potential) reveals a crit-
ical temperature of 6299 K [19]. The critical temperature of Al
from our simulation (see Table 4) shows a higher value than
Bhatt et al.’s, yet both values lies within the reported experi-
mental range. Our simulation result shows good agreement with
some of the literature values [20,21]. Note that literature values
of the critical point for fcc metals except Au are obtained from
fitting procedures to experimental data. Experimental data avail-
able for Na (see Fig. 5) shows that the values of the saturation
pressures from experiment and simulation follow a same trend.
However, the vapor pressure is underestimated consistently by
our simulation. From Table 4, the estimated Na critical density
of 353 kg/m? is close to the experimental value of 300 kg/m>.
This is however not true for K, where the predicted critical den-
sity is higher than the experimental value. The critical pressures
for the alkali metals show large deviations from the experimen-
tal values. For Na, the pressure is vastly overestimated because
the critical temperature is overvalued. It is observed that at the
experimental critical point of Na metal, 2485 K, the correspond-
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| K [®)
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0+ - —

T T T T
200 300 400 500

108/T (K)

Fig. 4. Plotof saturation pressure as a function of inverse temperature. Statistical
error is smaller than the symbol size. Symbol “+” represents the results of Bhatt
etal. [19].
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Fig. 5. Comparison plot of vapor pressures for Na as a function of temperature
between simulation and experimental values.

ing pressure predicted by simulation is a good approximation to
the experimental critical pressure.

5. Conclusions

Auvailability of experimental data for Na has allowed for com-
parisons with our simulation results and except for the critical
point (T¢c, Pc), simulated values of vapor pressure as a func-
tion of temperature closely follow the experimental data. The
experimental critical properties of K are much lower than those
estimated from the Morse potential. The VLE data for the fcc
metals has also been predicted. The limited literature data avail-
able does not allow for acomprehensive comparison. The critical
temperatures estimated for Al, Cu, and Au, lie within 13% of the
literature values. The critical pressure and critical density sim-
ulation values for the three fcc metals are overestimated, with
the exception of critical pressure values for Au and Al as noted
in the previous section. The differences in the structures of the
metal melt for the fcc and bce metals are also reflected in the
VLE curves.
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In this study, a simple pair PEF, the Morse potential model,
with the fitting parameters reflecting solid phase properties
has been used to interpret the complex interactions in the lig-
uid and vapor phases. The Morse PEF has been combined
with a classical Monte Carlo technique, GC-TMMC, to pre-
dict the VLE for metals in forms of fluids. The objectives of
the study were to investigate the behavior of Morse fluids and
how correctly the solid phase parameters available in litera-
ture describe the vapor and liquid phases, which are distinctly
different in behavior from the solid phase. Since the Morse
PEF is not completely reducible, the choice of parameter ary
is taken as per the solid metal range. The critical properties
of Cu, Na, and K are overestimated by our simulations and
this indicates that the used parameters need to be refined to
give a better agreement with experimental data. Scaling of the
parameters to correctly predict the literature values, which are
also observed to have a wide scatter, is reserved for further
study.
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